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buckling slopes are given by the dashed lines. The combined
effects of increasing v and pressure increase the direction of
initial postbuckling from an extreme slope almost doubling
back on the original prebuckling displacement curve to a
slope of roughly half that of the prebuckled slope. The
wide variation in initial postbuckling slopes shown in Fig. 8a
can be expected to decrease as 6 decreases. The extreme
slopes at low pressure move counterclockwise with decreasing
6, while the limiting slope at high pressure changes very
slightly. For example, the § = 0.7 case for v = 0 closely
approximates that given in Fig. 8c.

6. Concluding Remarks

The effects of internal pressure and edge stiffener torsional
rigidity on buckling and initial postbuckling behavior have
been presented. The study is conducted within the context
of the Kdérmén-Donnell equations and Koiter’s initial post-
buckling theory. It has been shown that even moderate
values of torsional rigidity significantly reduce the panel
imperfection sensitivity. An internal pressure can also aid
in making the panel more insensitive to small geometric
imperfections. In addition, the values of the panel flatness
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parameter for which the analysis is valid is increased by in-
cluding the torsional rigidity of the stiffener. In the limit
where torsional rigidity and internal pressure are zero, the
present results reduce exactly to the original results of
Koiter.
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Finite-Element Analysis of Large Elastic-Plastic Transient
Deformations of Simple Structures

Ricuarp W. H. Wu* axp EmmerT A. WITMERT
Massachusetts Institute of Technology, Cambridge, Mass.

The assumed-displacement finite-element method which is based upon the Principle of
Virtual Work is extended to analyze the large-deflection transient responses of simple struc-
tures including elastic-plastie, strain-hardening, and strain-rate material behavior. The re-
sulting equations of motion are solved by a direct timewise numerical integration scheme us-
ing the central-difference procedure. Numerical examples are carried out and compared with
both finite-difference predictions and experimental results for an impulsively loaded beam and

an im pulsively loaded ring.

Introduction

HE conventional closed form analysis/prediction of
structural transient responses which involve large de-
formations and nonlinear material behavior is rendered
practically impossible by the complexities arising from these
two sources of nonlinearities. In practice, therefore, one is
usually foreed to employ numerical prediction methods.
Numerical methods of structural analysis may be described
conveniently in two categories. In the first category is the
“finite-element method” which is most systematically based
upon variational principles'; the solid continuum is idealized as
an assemblage of a finite number of regions which are con-
nected at a finite number of nodes along interelement (or
interregion) boundaries, with the geometry and the material
properties of the continuum being faithfully retained in the
idealized structural assembly. The second category, “the
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numerical solution of the governing algebraic and/or differ-
ential equations,” is based upon mathematically approxi-
mating and solving the differential equations by either finite
differences®~* or by numerical integration.®~7 In the past
several years, the finite-element method has undergone inten-
sive development and has proved to be a very effective and
powerful method for analyzing certain classes of problems
such as small-deflection, linear-elastic, static, and dynamic
response behavior.~'t For predicting large-deflection, elas-
tic-plastic transient response of structures, the finite-difference
approach® 12714 has been much more extensively developed
than the finite-element method; corresponding developments
of the finite-element method to treat this class of problems
would be valuable. A contribution to this area is the subject
of this study.

Among the finite-element analyses for large-deflection
linear-elastic behavior including both static and transient
responses are the developments reported in Ref. 15 for shells
of revolution. In Ref. 15, large deflection terms are treated
as equivalent foree terms which are derived from the pertinent
energy expressions in the variational formulation employed;
for those special terms, a linear rather than a cubic displace-
ment field for the normal displacement is used in order to
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avoid numerical difficulties, and represents a plausible ap-
proximation. Iterative and extrapolative procedures for
handling those terms in solving the equations of motion are
investigated. The inclusion of nonlinear (elastic-plastic)
material behavior as well as large deflections in the finite-
element approach is described and predictions are given, for
example, in Refs. 16 and 17 for static problems, and in Ref. 18
the finite-element formulation of the equilibrium equation is
given and an incremental stiffness equation is derived; how-
ever, no transient response analysis is reported in Ref. 18.
Reference 16 utilizes the initial strain concept for including
plastic behavior while Refs. 17 and 18 employ the tangent
modulus approach; in all of these cases a linearized ineremen-
tal formulation results.

Recently Salus, Ip, and Vanderlinden!® have described the
formulation and application of a finite-element approach for
predicting the large-deflection elastic-plastic transient re-
sponse behavior of beam-type structures. The resulting pre-
dictions, for several examples reported, are in good agreement
with finite-difference predictions and with experimental re-
sults. This formulation is of the assumed displacement type
but is not based upon variational principles; lumping of
masses and external loads is used. Emphasizing the plastic
part of the behavior, only linear displacement fields are intro-
duced for all of the displacements, and transverse shear de-
formation is included. While elastic, perfectly plastic ma-
terial behavior is taken into account, the effect of transverse
shear deformation on yieldirig and flow appears to be ac-
counted for only in an indirect fashion.

In the present study the assumed-displacement finite-ele-
ment approach, which is based upon the Principle of Virtual
Work (displacements) and D’Alembert’s Principle, is applied
to analyze the large-displacement, elastic-plastic, strain-
hardening, transient, Kirchhoff-type responses of general
curved beams. In this formulation, the Lagrangian de-
scription is used. The assumed-displacement field includes
the rigid-body modes exactly. The mass and the externally
applied loads are included in a variationally consistent fashion.
The resulting equations of motion are solved numerically in a
time-wise step-by-step manner using the central-difference
procedure.

Formulation of the Governing Equations

For a continuum in equilibrium (static or dynamic, and
with arbitrary deformation conditions consistent with the pre-
seribed displacement boundary conditions); the Principle of
Virtual Work states that

U — oW =0 )
where

8U = fJf Siidy,;dV = variation of the internal energy (2)t
Vo

W = fff poBioudV ~+ [ff 4 Tidu;dA = variation of the
Vo

of the body forces Bi work (inertia, gravity,
magnetic, ete.) per unit mass of the body and
of the externally applied surface tractions

Ti. (3)

In these equations S# is the Kirchhoff stress tensor
(based upon a unit area of the undeformed body), v:; is the
strain tensor, u; represents the displacement components, po
represents the mass per unit volume of the undeformed body,
and only displacement variations (8) are permitted. All
pertinent quantities are described with respect to a set of
initial (intrinsic, Lagrangian) Cartesian coordinates &7.
Subdividing the continuum into n finite elements or regions,
Eq. (1) may be written by summing the contributions from

1 The customary tensor indicial and summation conventions
are used. Latin minuscules range over the values 1, 2, and 3.
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each of the finite elements as follows:

Z U, —W,) =0 (4)
n=1
where
8Un = Sffv, Siidy:;dV (5)
W = S v, poBi6uidV + ff 4niuy Ti0u;dA +

ffAn(in) Tiou;dA (6)

In Eqgs. (4-6), V. is the volume of element n, A,un is the
surface area of element n which is shared with mating ele-
ments, and A,y 18 the remaining surface area of element n.
Both V, and 4, are referred to the undeformed state.

The strains v; may be expressed in terms of the displace-
ments by

Yis = Fluas A s+ e, 5]

= ’yijL + ’YijNL (7)

where
vii® = £lui; + u;5] = linear part (8)
Yii¥5 = %lue,u% ;] = nonlinear part 9)

Therefore, if one chooses for each element an assumed dis-
placement field of the form:

ui = [NJ{q} (10)

where the {g} represent conveniently chosen generalized
nodal displacements of the finite element, it follows that

ui = [N {sq} (11)
Hence,
dvii = D) {3g} + g { D} [Ds2] {0q) 12)
where
[Dis] = F(UINwil + |Ns])
[Dail = [N, (12a)
[Dg] = [N<j]
Employing Eqs. (11) and (12) and setting B’ = — o/ +

fi, Eq. (4) becomes, in matrix form:
5 UAFv.sq) (D S50V + S v.l3q]{ Dod 1D S50} AV +
n=1

JISv. 8l INTTpoIN W@} dV — Sf S v 6a] INT7po{f}dV —
ffAn(ouc) l‘SQJ [N]T{T}dA - ffAn(in) [SQJ [N]T{ T}dA) =0 (13)

Before performing the indicated summation over all of the
finite elements, it is useful to transform all of the element
generalized displacements {¢} to those for a global reference
frame {¢*} by

{o} = W™ (14)
Applying Eq. (14) to Eq. (13), one obtains:

> Loa®) (U} + o} + (2} — (@) — (@) = 0

(15)
where

m] = 17 fffv. INTTpo[N1dV ] (16)

lp] = V17 fffv. (D} SiidV an

(h] = U7 fffv, | Dui} | D] SiidV [J] (18)

Q) = 17U v oo NI}V + S o INJF{THAA) - (19)
{Qu} = V17 ff auim INIT{T}dA (20)
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Performing the indicated summation and poting that
terms involving the areas A, cancel out identically, one
obtains:

6q*) ([M*1{g*) + {P} + [H){¢*} — {F]) =

Since the dg* are independent and arbitrary, the following
equations of dynamic equilibrium result from Eq. (21):

(Mg} + (P} + H)a*) = {F)

Given a set of initial conditions {¢*}, {¢*}, and {F} at ¢ = 0,
Eqs. (22) may be solved in a step-by-step timewise fashion by
using, for example, the central-difference scheme. Further
aspects of the solution process are noted later.

1t is important to note that in the conventional assumed-
dlsplacement finite-element method, quadratic and cubic
terms in the displacement varlables would appear in the
dynamic equation of equilibrium in the form*®:

*1{g*) + (K*)q*} = (F} + {R(g*¢*)}

In the present study, it has been found that, for a given time-
wise numerical integration scheme, the formulatlon denoted
by Eq. (22) is well behaved while the formulation expressed
by Eq. (22a) is badly behaved (unstable) unless an extremely
small time increment is used; therefore Eq. (22) is employed
in the present analysis and represents the central contribution
of this study.

In connection with Eq. (22), it should be noted that the
quantities [M*] and {F} are exactly the same as found in the
conventional assumed displacement formulation for smali-
displacement, linear-elastic behavior as represented by Eq.
(22a). The {P} in Eq. (22) replaces the usual stiffness terms
[K*1{g*} for small displacements but here also reflect some
plastic behavior contributions; the terms [H]{¢*} are new
and arise because of both large deflections and plastic be-
havior.

Alternatively, if desired, this formulation could be (and has
been) developed in terms of deformation rates ete., by using
the less common Principle of Virtual Velocities.

Finally, Eq. (1) can be utilized, if desired, to show that any
point in the continuum must satisfy the following equilibrium
equations:

0 (21)

(22)

(22a)

[Sim(8mt + ui w)] s (23)

2, and 3. On
is prescribed (de-

i+ poft = poll?
1,

the boundary where the surface traction 7% i
noted by the bar)

[Sim(8mi + wim)ln; = T (249
where gn; is the component of the unit outward vector normal
to the undeformed surface. Also, on portions of the boundary
whereon the displacements 4, are preseribed,

Uy = Uy (25)
It should be noted that this formulation pertains to any
type of loaded body. In the remainder of this discussion,
however, its application is demonstrated only for simple
curved and straight beamlike structures which undergo
planar (two-dimensional) deformations; in the structural
finite-element context, such configurations are termed one-
dimensional.
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Fig. 1 Nomenclature for geometry, coordinates, and dis-~
placements for a curved-beam finite element.

Formulation for a General Curved Beam

Geometry

The discrete element to be considered is a general curved
beam as shown in Fig. 1. The slope, ¢, of the element is
assumed to be a second-order polynomial in the curvilinear
coordinate, », as follows:

o) = bo 4+ by + ban? (26)

The constants by, by, and by may be determined from the known
geometry of the curved beam element by requiring the slopes
of the idealized beam element and the actual beam element to
have the same slopes at the nodes and that the ends 4 and
t+1lheonz=0.

Displacement Field

Employing the Bernoulli-Euler hypothesis, the displace-
ment field @@ of the beam may be specified by the middle-
plane displacements v and w, and the rotation ¥, as follows:

a(¢m = uln) — &P

27)
w(¢,m) = w(n)
where

5¢

yn) = + (272)

Considering the beam element in space, if it is subjected to
small amplitude rigid-body translations v, and v,, and rotation
Q, with respect to the local reference coordinate system (x,y,2),
the rigid-body displacement of any point p(X,Z) is given by

lu
W J rigid body

|: cosp sing  (Z — Zg) cos(¢p + a) —

(X — Xo) sin(¢ + a):|
—sing cos¢ — (Z — Zo) sin(¢ + ) —

(X — Xo) cos(e + )

Vs
;v, g (28)
Q,

where X, and Z, represent the global planar eoordinates of the
origin of the (z,y,2) coordinate system.

To account for the strain-inducing modes and the rigid-body
modes, the assumed displacement field? takes the form

\
u cosp sing (Z — Zo) cos(¢p + o) — (X — X,) sin(¢ + «) 7 0 0 Z;
_ —sing coso —(Z — Zp) sin(¢p + a) — (X — Xy) cos(¢p + ) 0 n? 70 | )as (29)
v 0 0 1 192 o ||
n s
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Fig. 2 Midspan deflection response for explosively-loaded
clamped 6061-T6 beam.

where a,,a2. . .0 are constants which will be expressed in
terms of the six selected generalized displacements of the
element. Inmore compact matrix form, Eq. (29) becomes

{u} = [8){a} (30)

The generalized displacements {¢} chosen to characterize the
deformation state of this element are selected such that there
are three degrees of freedom u, w, and ¢ at each node of the
element:

{9} = |ws wi i wor s wir Yir |7 = [4){a} (31)
If a straight beam is considered, the corresponding quantities
can be obtained by letting ¢ = 0 and 9¢,/d7 = 0.
Strain-Displacement Relations

Under the Bernoulli-Euler hypothesis the only nonvanish-
ing (uniaxial) corresponding stress component and strain
component are o and ¢, respectively, and the nonlinear strain-
displacement relation may be expressed as:

e= ¢+ (K (32)
where
€ = Ou/0n — wog/0n + 1[ow/0n + u(dd/dn)12
= |Bi/{u} + {[u]{Bs} |Bsf {u}
= —(0/0m) [ow/0n + u(d¢/0n)] == |Bs[{u}  (33)
Combining Eqs. (30-33), one obtains

{u} = [V1{q} (34)
and
o = |Dil{g} + £lgl{D:} D) {q}
K = |Dy{q} (35)
where

N] = [SHA]™, D] = {B)][S1[A]
[Do] = [Bal [STA]7, [Da] = |Bsf[S][A]

In the process of solution, it is required to evaluate the
strain increment Ae. From Eq. (35), the strain increment is

related to the displacements and the displacement increments
by

Ae = Aeg + {AK (36)
where
Aeo = |DiJ{Ag} + gl {Do} | D:f { Ag}
AK = [Dsl{Aq}
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Equations of Dynamic Equilibrium
Introducing the stress resultants for the cross section

L = ff, ods, M = ff, otds @7

where the integrations being taken over the cross section of
the beam element, and substituting Eqs. (34), (35), and (37),
into the Principle of Virtual Displacements equation, Eq. 15),
one obtains

> el (i Ha*) + (o} + Bl(e*) — (@) =0 @38)

n=1
where
fm‘-u [m 0 O:l
Im] = [JI7 IN]7)0 = 0| [NldglJ]
0 0 0 I

(o} = W1 [ UDAL + (D2
o (38a)
w = W1 [ (D) 1D LaniT)

Q) = e [ lirif)dn
and # is the mass per unit original length of the beam element,
and I is the moment of inertia of the cross section. The
integrations along the length of the beam element which ap-
pear in {p} and [A] may be performed numerically, for exam-
ple, using the Gaussian quadrature scheme.?® The axial
force L and moment M at those integration stations will be
described and evaluated later.

Stress-Strain Relations

Because of nonlinear material behavior, although the strain
variation through the beam thickness, by the Bernoulli-Euler
hypothesis, is linear, the variation of stress across the thick-
ness is nonlinear. For computational convenience, the
stresses are evaluated at selected Gaussian points across the
thickness and the corresponding weighting function is used in
evaluating the pertinent integrals by Gaussian quadrature.
The strain-hardening behavior of the material may be ac-
counted for by representing the material at each Gaussian
station as consisting of equally-strained sublayers of elastic,
perfectly plastic material, with each sublayer having the same
elastic modulus but an appropriately different yield stress;
this is the well-known mechanical sublayer model.12.22,28

An illustration of the method of computing the stress is
presented as follows. One begins by knowing the sublayer
stress o;z,,—1 at time ¢;—; for the kth sublayer of the jth Gaus-
sian station (layer), and the layer strain increment Ae; ; at
time #; (that is, the strain increment from time #;—; to time

| w=4862 IN/SEC

CENTRAL DEFLECTION (INCH)

// ELASTIC LINEAR-STRAIN- o EXPERIMENT (REF.12)
HARDENING RING

E = 10.5 x 106 PSI
E_ = 78,700 PSI
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—.— FINITE DIFFERENCE {REF.12)

00 = 42,800 PSI

]

AP R AR S
° 1000 2000 3600
TIME (MICROSECONDS)

Fig. 3 Central deflection response for explosively-loaded
6061-T6 clamped circular ring.
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t). One then takes a trial value (superseript ¢) of oz, which
is computed by assuming an elastic path:

Oinit = Ojui-1 + Bl (39)

A check is then performed to see what the correct value of
01, ust be:

If —o < ojnit < oo then ajrs = 0ji,s
it Ginit < — 0ok then ojr,i = — 0ok (4-0)
1f oinit > oor then ok = oo

where E is Young’s modulus and o, is the yield stress of the
idealized elastic, perfectly plastic kth sublayer.

This procedure is applied to all sublayers of each layer or
Gaussian station j; having done this, the axial force and
moment can be determined by

PP ()
g ()

where b is the width and & is the thickness of the beam and
A ;; is the mechanical sublayer weighting factor which is de-
fined by

(41)

Aj = (Wi/E)(Ex — Eier) (42)
In Eq. (42) W, is the Gaussian weighting factor and
Ei = (or — ar1) /(& — 1) (43)

is the kth slope of the polygonal approximate stress-strain
diagram. It can be verified that the relations Z:4 ;,/W; = 1,
and Wo; = Z3A ;10 are satisfied.

If desired, the sublayer yield stresses may be treated as
strain-rate dependent as described, for example, in Ref. 4.

Solution Method

The timewise central-difference scheme is used to solve
the dynamic equations of equilibrium. In this scheme, the
relations between displacements and displacement increments
at any instant of time ¢ = ¢, are

{Ag*} s = {¢*)u — {g*}m (44)
and

{o*u = {¢*e + {A¢Mw + {A¢* e + ..+ {A¢H) s

At time #;, the acceleration may be expressed in terms of dis-
placement increments by the following central-difference
finite difference expression:

{q*}!i = [{ Aq*}ti+l - {Aq*}ii]/(At)2 (45)

Employing Eq. (45), the dynamic equations of equilibrium
(from Eq. (38)) at any time instant ¢ becomes

{A¢* e = {Ag*} s + (AD2M*({F) — (P} — [H]{¢*Du
(46)

With the specified initial velocity {¢*}, and the load acting at
time zero, {F}4«, the caleulation scheme commences by as-
suming the initial stress distribution is zero, and the increment
of displacement between time-step zero and time-step one is
{Ag*ta = {g*}u(A) + (AD2(M*]{F}, (47)
After the calculation of { Ag*}, the strain increment at any
station or point in the element can be obtained from Eq. (36).
With the strain increment available, the stress increment and
stress is computed from the stress-strain relation. Then the
stress resultants (i.e., the axial force and moment) are ob-
tained from Eq. (41). Equation (46) furnishes the displace-
ment increment for the next time step. The process is cyclic
thereafter.
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In order to insure the stability of the timewise numerical-
integration method, the time-step size, Af, must be small
enough; for the problem of the present type, use is made of
the criteria®t defined by the linear problem as a guide for the
initial selection of A¢ values. Numerical experimentation
then subsequently can provide the proper At to insure sta-
bility.

Other time integration schemes such as those discussed, for
example, in Ref. 25 could be employed, if desired, to enable
one to use larger time increments At.

Results and Discussion

A computer program employing this beam element has
been developed, and numerical examples have been carried
out. The first example problem discussed here is an elastic
perfectly plastic clamped beam loaded impulsively over a
spanwise segment centered at its midspan. Since there is
symmetry with respect to both geometry and loading, only
one-half span is modeled in the finite-element analysis with
symmetry imposed at midspan. Figure 2 shows the present
finite-element prediction for the midspan lateral displacement
history vs both a finite-difference solution!? and experimental
results.!> Very good agreement among these results is ob-
served. The half-span was modeled with 30 finite-difference
stations and with 10 finite elements, and the time-step sizes
are € usec and 1 psec for the finite-difference and the finite-
element calculation, respectively. The 6061-T6 aluminum
beam material was modeled as being rate-independent elastie,
perfectly plastic for both calculations. :

For this clamped beam problem, the use of formulation
Eq. (22a) has been tested by the same timewise central-
difference scheme and the same finite-element breakdown.
The calculation was found to be numerically unstable for a
time-step size as small as 0.1 usec.

The second problem discussed is an explosively loaded
clamped circular 6061-T6 ring. Figure 3 shows the deforma-
tion response history of the experimentally measured central
radial (or vertical) deflection compared with finite-difference
and the present finite-element predictions; the material is
modeled as rate-independent, elastic, linear-strain hardening.
Comparing these calculations with experiment, a somewhat
stiffer response is predicted by the finite-element method:
the peak deformation response is 129, less and it occurs
300 psec before that observed experimentally, whereas the
finite-difference prediction vastly overestimates the response.
Again advantage was taken of symmetry by modeling half of
the ring by 31 finite-difference stations or by 19 finite elements.
The time-step size is 1 usec in both numerical calculations.

To assess further the accuracy of the deformation profile
predictions, experiment, the finite-difference, and the finite-
element predicted deformation profiles are compared in Fig. 4
at 780 usec and at 2880 usec. At 780 usec, both predictions
are in reasonably close agreement with experiment, with the
finite-element result being somewhat better. At 2880 usec,
the finite-element result exhibits somewhat ‘stiffer behavior”’
but the finite-difference prediction vastly overestimates the
deformation. The reasons for these prediction discrepancies
have not yet been firmly established. Incidentally, as illus-
trated in Ref. 12, the inclusion of a fairly weak dependence of
the yield stress upon strain rate produces a significantly re-
duced response.

Finally, it is of interest to note that the matrices {p} and
[r] given by Eq. (38a) are evaluated at each instant of time
by employing Gaussian quadrature; in the present examples,
3 spanwise Gaussian stations and 4 depthwise Gaussian sta-
tions at each spanwise Gaussian station were employed.

The present finite-element formulation represented by Eq.
(22) provides a significant improvement over the former con-
ventional formulation, Eq. (22a), for analyzing the large,
elastic-plastic transient deformations of structures. Applica-
tion of the present formulation to complex shell structures will
be of interest.
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